NEVADA TRANSPORTATION BY THE NUMBERS:
Meeting the State’s Need for Safe and Efficient Mobility

APRIL 2013

Founded in 1971, TRIP ® of Washington, DC, is a nonprofit organization that researches, evaluates and distributes economic and technical data on surface transportation issues. TRIP is sponsored by insurance companies, equipment manufacturers, distributors and suppliers; businesses involved in highway and transit engineering and construction; labor unions; and organizations concerned with efficient and safe surface transportation.
<table>
<thead>
<tr>
<th>Ten Key Transportation Numbers in Nevada</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.1 billion</td>
</tr>
<tr>
<td>TRIP estimates that Nevada roadways that lack some desirable safety features, have inadequate capacity to meet travel demands or have poor pavement conditions cost the state’s residents approximately $2.1 billion annually in the form of additional vehicle operating costs, the cost of lost time and wasted fuel due to traffic congestion and traffic crashes.</td>
</tr>
<tr>
<td>$2 billion</td>
</tr>
<tr>
<td>Estimates by the Nevada Department of Transportation (NDOT) calculate that the current backlog to repair all state maintained roads and bridges in Nevada is approximately $2 billion. Under current funding, the backlog is expected to increase to $3.4 billion by 2025.</td>
</tr>
<tr>
<td>$3.4 billion</td>
</tr>
<tr>
<td>Driving on roads that are congested, deteriorated and that lack some desirable safety features costs the average Las Vegas area driver $1,464 annually. The average driver in the Reno-Carson City urban area loses $1,698 each year due to driving on deficient, congested roads.</td>
</tr>
<tr>
<td>$1,464</td>
</tr>
<tr>
<td>$1,698</td>
</tr>
<tr>
<td>Fifty-one percent of Nevada’s major locally and state-maintained urban roads and highways are either in poor or mediocre condition. Fifty-six percent of Las Vegas-area major locally and state-maintained urban roads are in poor or mediocre condition. In the Reno-Carson City area, 86 percent of roads are in poor or mediocre condition.</td>
</tr>
<tr>
<td>51%</td>
</tr>
<tr>
<td>56%</td>
</tr>
<tr>
<td>86%</td>
</tr>
<tr>
<td>From 2007 to 2011, on average 289 people were killed annually in Nevada traffic crashes, a total of 1,443 fatalities over the five year period.</td>
</tr>
<tr>
<td>289</td>
</tr>
<tr>
<td>1,443</td>
</tr>
<tr>
<td>The fatality rate on Nevada’s non-interstate rural roads is nearly two times higher than on all other roads in the state (1.91 fatalities per 100 million vehicle miles of travel vs. 0.98).</td>
</tr>
<tr>
<td>2X</td>
</tr>
<tr>
<td>A total of 12 percent of Nevada bridges are in need of repair, improvement or replacement. Two percent of the state’s bridges are structurally deficient and ten percent are functionally obsolete.</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>Vehicle miles of travel in Nevada increased 137 percent from 1990 to 2011, the largest increase in vehicle travel in the nation.</td>
</tr>
<tr>
<td>137 %</td>
</tr>
<tr>
<td>1st</td>
</tr>
<tr>
<td>There are 1,700,829 licensed drivers in Nevada.</td>
</tr>
<tr>
<td>1,700,829</td>
</tr>
<tr>
<td>The Federal Highway Administration estimates that each dollar spent on road, highway and bridge improvements results in an average benefit of $5.20 in the form of reduced vehicle maintenance costs, reduced delays, reduced fuel consumption, improved safety, reduced road and bridge maintenance costs, and reduced emissions as a result of improved traffic flow.</td>
</tr>
<tr>
<td>$1.00 = $5.20</td>
</tr>
</tbody>
</table>
Executive Summary

Nevada’s extensive system of roads, highways and bridges provides the state’s residents, visitors and businesses with a high level of mobility and forms the backbone that supports the state’s economy. Nevada’s surface transportation system enables the state’s residents and visitors to travel to work and school, visit family and friends, and frequent tourist and recreation attractions while providing its businesses with reliable access to customers, materials, suppliers and employees.

As Nevada looks to retain its businesses, maintain its level of economic competitiveness and achieve further economic growth, the state will need to maintain and modernize its roads, highways and bridges by improving the physical condition of its transportation network and enhancing the system’s ability to provide efficient and reliable mobility for motorists and businesses. Making needed improvements to Nevada’s roads, highways and bridges could also provide a significant boost to the state’s economy by creating jobs in the short-term and stimulating long-term economic growth as a result of enhanced mobility and access.

With an unemployment rate of 9.7 percent and with the state’s population continuing to grow, Nevada must improve its system of roads, highways and bridges to foster economic growth and keep businesses in the state. In addition to economic growth, transportation improvements are needed to ensure safe, reliable mobility and quality of life for all Nevadans. Meeting Nevada’s need to modernize and maintain its system of roads, highways and bridges will require a significant boost in local, state and federal funding.

An inadequate transportation system costs Nevada residents a total of $2.1 billion every year in the form of additional vehicle operating costs (VOC), congestion-related delays and traffic crashes.

- TRIP estimates that Nevada roadways that lack some desirable safety features, have inadequate capacity to meet travel demands or have poor pavement conditions cost the state’s residents approximately $2.1 billion annually in the form of additional vehicle operating costs, the cost of lost time and wasted fuel due to traffic congestion, and traffic crashes.

- TRIP has calculated the annual cost to Nevada residents of driving on roads that are deteriorated, congested and lack some desirable safety features both statewide and in the state’s largest urban area. The following chart shows the cost breakdown for these areas.

<table>
<thead>
<tr>
<th>Location</th>
<th>VOC</th>
<th>Congestion</th>
<th>Safety</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las Vegas</td>
<td>$365</td>
<td>$906</td>
<td>$193</td>
<td>$1,464</td>
</tr>
<tr>
<td>Reno-Carson City</td>
<td>$771</td>
<td>$590</td>
<td>$337</td>
<td>$1,698</td>
</tr>
<tr>
<td>Nevada - Statewide Total</td>
<td>$538 Million</td>
<td>$1.1 Billion</td>
<td>$508 Million</td>
<td>$2.1 Billion</td>
</tr>
</tbody>
</table>
Nevada faces a growing transportation funding shortfall. Estimates by the Nevada Department of Transportation (NDOT) calculate that the current backlog to repair all state maintained roads, highways and bridges in Nevada is approximately $2 billion.

- A bi-annual state report released in early 2013 by the Nevada Department of Transportation found that there is a significant backlog in needed repairs on Nevada’s state-maintained roads, highways and bridges. These state-maintained roads, highways and bridges are a critical component of the state’s transportation system, accounting for 20 percent of the state’s road mileage, but carrying 54 percent of all vehicle miles of travel and 80 percent of all large truck travel in the state.

- The report found that currently 23 percent of state-maintained roads and highways in Nevada need major rehabilitation and that the current backlog to repair all state maintained roads and bridges is approximately $2 billion, with $1.9 billion being for pavement preservation and the remainder for needed bridge repairs.

- The report noted that the backlog for needed road, highway and bridge repairs has increased significantly since 2011 when it was $1.36 billion and that under current levels of funding the preservation backlog to repair state-maintained roads, highways and bridges in the state is expected to increase to $3.4 billion by 2025. The report estimated that eliminating the backlog of needed repairs on Nevada’s state-maintained roads, highways and bridges would require an additional investment of $285 million annually through 2025.

Population and economic growth in Nevada have resulted in increased demands on the state’s major roads and highways, leading to increased wear and tear on the transportation system.

- Nevada had the largest increase in population in the nation between 1990 and 2012. Nevada’s population reached 2.7 million in 2012, a 125 percent increase since 1990, when the state’s population was approximately 1.2 million.

- Nevada had 1,700,829 licensed drivers in 2011.

- Vehicle miles traveled in Nevada increased by 137 percent from 1990 to 2011, the largest increase in the nation during that time. Vehicle travel in Nevada jumped from 10.2 billion vehicle miles traveled (VMT) in 1990 to 24.2 billion VMT in 2011.

- By 2030, vehicle travel in Nevada is projected to increase by another 50 percent.

- From 1990 to 2011, Nevada’s gross domestic product, a measure of the state’s economic output, increased by 138 percent, when adjusted for inflation.
Approximately half of major locally and state-maintained, urban roads and highways in Nevada have pavement surfaces in poor or mediocre condition, providing a rough ride and costing motorist in the form of additional vehicle operating costs.

- Sixteen percent of Nevada’s major urban roads and highways have pavements in poor condition, while an additional 35 percent of the state’s major roads are rated in mediocre condition.

- The pavement data in this report for all arterial roads and highways is provided by the Federal Highway Administration, based on data submitted annually by the Nevada Department of Transportation (NDOT) on the condition of major state and locally maintained roads and highways in the state.

- In the Las Vegas urban area, 11 percent of major locally and state-maintained roads are rated in poor condition and 45 percent are rated in mediocre condition. Fifteen percent of Las Vegas’ major urban roads are rated in fair condition and 29 percent are rated in good condition.

- In the Reno-Carson City urban area, 55 percent of major locally and state-maintained roads are rated in poor condition and 31 percent are rated in mediocre condition. Two percent of the Reno-Carson City major urban roads are rated in fair condition and 12 percent are rated in good condition.

- Roads rated in poor condition may show signs of deterioration, including rutting, cracks and potholes. In some cases, poor roads can be resurfaced, but often are too deteriorated and must be reconstructed. Roads rated in mediocre condition may show signs of significant wear and may also have some visible pavement distress. Most pavements in mediocre condition can be repaired by resurfacing, but some may need more extensive reconstruction to return them to good condition.

- Driving on rough roads costs Nevada motorist a total of $538 million annually in extra vehicle operating costs. Costs include accelerated vehicle depreciation, additional repair costs, and increased fuel consumption and tire wear.

- Driving on rough roads costs the average Las Vegas motorist $365 annually in extra vehicle operating costs.

- The average driver in the Reno-Carson City urban area loses $771 each year in extra vehicle operating costs.

Twelve percent of locally and state-maintained bridges in Nevada show significant deterioration or do not meet current design standards often because of narrow lanes, inadequate clearances or poor alignment. This includes all bridges that are 20 feet or more in length.

- Two percent of Nevada’s bridges are structurally deficient. A bridge is structurally deficient if there is significant deterioration of the bridge deck, supports or other major components. Structurally deficient bridges are often posted for lower weight or closed to
traffic, restricting or redirecting large vehicles, including commercial trucks and emergency services vehicles.

- Ten percent of Nevada’s bridges are functionally obsolete. Bridges that are functionally obsolete no longer meet current highway design standards, often because of narrow lanes, inadequate clearances or poor alignment.

Significant levels of traffic congestion cause significant delays in Nevada, particularly in its larger urban areas, choking commuting and commerce.

- According to the [Texas Transportation Institute](https://tii.tamu.edu) (TTI), the average driver in the Las Vegas urban area loses $906 each year in the cost of lost time and wasted fuel as a result of traffic congestion. The average commuter in the Las Vegas urban area loses 44 hours each year stuck in congestion.

- TTI calculates that the average driver in the Reno-Carson City urban area loses $590 each year in the cost of lost time and wasted fuel as a result of traffic congestion. The average commuter in the Reno-Carson City urban area loses 27 hours each year stuck in congestion.

- Throughout the state, lost time and wasted fuel due to congestion cost Nevada’s drivers a total of $1.1 billion each year.

Nevada’s traffic fatality rate on rural, non-Interstate routes is more than two-and-a-half times higher than that on all other roads and highways in the state. Improving safety features on Nevada’s roads and highways would likely result in a decrease in the state’s traffic fatalities and serious crashes. Roadway features are likely a contributing factor in approximately one-third of all fatal and serious traffic crashes.

- Between 2007 and 2011, a total of 1,443 people were killed in traffic crashes in Nevada, an average of 289 fatalities per year.

- Nevada’s overall traffic fatality rate of 1.16 fatalities per 100 million vehicle miles of travel in 2010 is higher than the national average of 1.11.

- The fatality rate on Nevada’s rural non-Interstate roads was 1.91 fatalities per 100 vehicle miles of travel in 2010, nearly two times higher than the 0.98 fatality rate on all other roads and highways in the state.

- The cost of serious traffic crashes in Nevada in 2011, in which roadway features were likely a contributing factor, was approximately $508 million. In the Las Vegas urban area, traffic crashes cost the average driver $193 annually, while the average Reno-Carson City motorist loses $337 each year.

- Roadway features that impact safety include the number of lanes, lane widths, lighting, lane markings, rumble strips, shoulders, guard rails, other shielding devices, median
barriers and intersection design. The cost of serious crashes includes lost productivity, lost earnings, medical costs and emergency services.

- Several factors are associated with vehicle crashes that result in fatalities, including driver behavior, vehicle characteristics and roadway features. TRIP estimates that roadway features are a contributing factor in approximately one-third of fatal traffic crashes.

- Where appropriate, highway improvements can reduce traffic fatalities and crashes while improving traffic flow to help relieve congestion. Such improvements include removing or shielding obstacles; adding or improving medians; improved lighting; adding rumble strips, wider lanes, wider and paved shoulders; upgrading roads from two lanes to four lanes; and better road markings and traffic signals.

- Investments in rural traffic safety have been found to result in significant reductions in serious traffic crashes. A 2012 report by the Texas Transportation Institute (TTI) found that improvements completed recently by the Texas Department of Transportation that widened lanes, improved shoulders and made other safety improvements on 1,159 miles of rural state roadways resulted in 133 fewer fatalities on these roads in the first three years after the improvements were completed (as compared to the three years prior). TTI estimates that the improvements on these roads are likely to save 880 lives over the next 20 years.

The efficiency of Nevada’s transportation system, particularly its highways, is critical to the health of the state’s economy. Businesses are increasingly reliant on an efficient and reliable transportation system to move products and services. A key component in business efficiency and success is the level and ease of access to customers, markets, materials and workers.

- Annually, $53 billion in goods are shipped from sites in Nevada and another $77 billion in goods are shipped to sites in Nevada, mostly by truck.

- Seventy-eight percent of the goods shipped annually from sites in Nevada are carried by trucks and another 18 percent are carried by courier services or multiple mode deliveries, which include trucking.

- Increasingly, companies are looking at the quality of a region’s transportation system when deciding where to re-locate or expand. Regions with congested or poorly maintained roads may see businesses relocate to areas with a smoother, more efficient and more modern transportation system.

- Site Selection magazine’s 2010 survey of corporate real estate executives found that transportation infrastructure was the third most important selection factor in site location decisions, behind only work force skills and state and local taxes.

- A 2007 analysis by the Federal Highway Administration found that every $1 billion invested in highway construction would support approximately 27,800 jobs, including approximately 9,500 in the construction sector, approximately 4,300 jobs in industries
supporting the construction sector, and approximately 14,000 other jobs induced in non-construction related sectors of the economy.

- The Federal Highway Administration estimates that each dollar spent on road, highway and bridge improvements results in an average benefit of $5.20 in the form of reduced vehicle maintenance costs, reduced delays, reduced fuel consumption, improved safety, reduced road and bridge maintenance costs and reduced emissions as a result of improved traffic flow.

Sources of information for this report include the Nevada Department of Transportation (NDOT), the Federal Highway Administration (FHWA), the Bureau of Transportation Statistics (BTS), the U.S. Census Bureau, the Texas Transportation Institute (TTI) and the National Highway Traffic Safety Administration (NHTSA).
Introduction

Nevada’s roads, highways and bridges form vital transportation links for the state’s residents, visitors and businesses, providing daily access to homes, jobs, shopping, natural resources and recreation. Today, with the state hoping to foster quality of life improvements and economic competitiveness, the modernization of Nevada’s transportation system is crucial, particularly to critical areas of the state’s economy including tourism, agriculture and manufacturing.

As the U.S. and Nevada look to rebound from the recent economic downturn, the preservation and modernization of the state’s transportation system could play an important role in retaining Nevada’s economic competitiveness and improving Nevada’s economic well-being by providing critically needed jobs in the short term and by improving the productivity and competitiveness of the state’s businesses in the long term. And as Nevada faces the challenge of preserving and modernizing its transportation system, the future level of federal, state and local transportation funding will be a critical factor in whether the state’s residents and visitors continue to enjoy access to a safe and efficient transportation network.

This report examines the condition, use and safety of Nevada’s roads, highways and bridges, federal, state and local funding needs, and the future mobility needs of the state. Sources of information for this study include the Nevada Department of Transportation (NDOT), the Federal Highway Administration (FHWA), the U.S. Census Bureau, the Texas Transportation Institute (TTI), the Bureau of Transportation Statistics (BTS), and the National Highway Traffic Safety Administration (NHTSA).
Population, Travel and Economic Trends in Nevada

Nevada residents and businesses require a high level of personal and commercial mobility. Population increases and economic growth in the state have resulted in an increase in the demand for mobility as well as an increase in vehicle miles of travel (VMT). To foster a high quality of life and spur economic growth in Nevada, it will be critical that the state provide a safe and modern transportation system that can accommodate future growth in population, tourism, recreation and vehicle travel.

Nevada’s population grew to 2.7 million residents in 2012, a 125 percent increase since 1990, when the state’s population was approximately 1.2 million.¹ This was the largest population increase in the nation between 1990 and 2012. Nevada has 1,700,829 licensed drivers.² From 1990 to 2011, Nevada’s gross domestic product (GDP), a measure of the state’s economic output, increased by 138 percent, when adjusted for inflation.³

From 1990 to 2011, annual vehicle miles of travel in Nevada increased by 137 percent, the highest increase in the nation during that time. VMT in Nevada increased from 10.2 billion miles traveled annually in 1990 to 24.2 billion miles traveled annually in 2011.⁴ Based on population and other lifestyle trends, TRIP estimates that travel on Nevada’s roads and highways will increase by another 50 percent by 2030.⁵

Condition of Nevada’s Roads

The life cycle of Nevada’s roads is greatly affected by the state's ability to perform timely maintenance and upgrades to ensure that road and highway surfaces last as long as possible. The pavement condition of the state's major roads -- generally roads other than neighborhood roads
or minor local roads -- is evaluated and classified as being in poor, mediocre, fair or good condition.

Throughout the state, approximately half of major locally and state-maintained urban roads and highways have deficient pavements, providing motorists with a rough ride.6 Sixteen percent of Nevada’s major roads and highways have pavements rated in poor condition.7 Another 35 percent of Nevada’s major roads are rated in mediocre condition, while 14 percent are rated in fair condition and the remaining 35 percent are rated in good condition.8

The pavement data in this report for all arterial roads and highways is provided by the Federal Highway Administration, based on data submitted annually by the Nevada Department of Transportation (NDOT) on the condition of major state and locally maintained roads and highways in the state.

Roads rated poor may show signs of deterioration, including rutting, cracks and potholes. In some cases, poor roads can be resurfaced but often are too deteriorated and must be reconstructed. Roads rated in mediocre condition may show signs of significant wear and may also have some visible pavement distress. Most pavements in fair condition can be repaired by resurfacing, but some may need more extensive reconstruction to return them to good condition.

Pavement failure is caused by a combination of traffic, moisture and climate. Moisture often works its way into road surfaces and the materials that form the road’s foundation. Road surfaces at intersections are even more prone to deterioration because the slow-moving or standing loads occurring at these sites subject the pavement to higher levels of stress. It is critical that roads are fixed before they require major repairs because reconstructing roads costs approximately four times more than resurfacing them.9 As roads and highways continue to age, they will reach a point of deterioration where routine paving and maintenance will not be
adequate to keep pavement surfaces in good condition and costly reconstruction of the roadway and its underlying surfaces will become necessary.

In the Las Vegas urban area, 11 percent of major locally and state-maintained roads are rated in poor condition, 45 percent are rated in mediocre condition, 15 percent are rated in fair condition and 29 percent are rated in good condition.10 In the Reno-Carson City urban area, 55 percent of major locally and state-maintained roads are rated in poor condition and 31 percent are rated in mediocre condition.11 An additional two percent of area roads are in fair condition and 12 percent are in good condition.12

The Costs to Motorists of Roads in Inadequate Condition

TRIP has calculated the additional cost to motorists of driving on roads in poor or unacceptable condition. When roads are in poor condition – which may include potholes, rutting or rough surfaces – the cost to operate and maintain a vehicle increases. These additional vehicle operating costs include accelerated vehicle depreciation, additional vehicle repair costs, increased fuel consumption and increased tire wear. TRIP estimates that additional vehicle operating costs borne by Nevada motorists as a result of poor road conditions is $538 million annually.

Driving on rough roads costs the average motorist in the Las Vegas area $365 annually in extra vehicle operating costs. Drivers in the Reno-Carson City area lose an average of $771 annually in extra vehicle operating costs.

Additional vehicle operating costs have been calculated in the Highway Development and Management Model (HDM), which is recognized by the U.S. Department of Transportation
and more than 100 other countries as the definitive analysis of the impact of road conditions on vehicle operating costs. The HDM report is based on numerous studies that have measured the impact of various factors, including road conditions, on vehicle operating costs.13

The HDM study found that road deterioration increases ownership, repair, fuel and tire costs. The report found that deteriorated roads accelerate the pace of depreciation of vehicles and the need for repairs because the stress on the vehicle increases in proportion to the level of roughness of the pavement surface. Similarly, tire wear and fuel consumption increase as roads deteriorate since there is less efficient transfer of power to the drive train and additional friction between the road and the tires.

TRIP’s additional vehicle operating cost estimate is based on taking the average number of miles driven annually by a motorist, calculating current vehicle operating costs based on AAA’s 2012 vehicle operating costs and then using the HDM model to estimate the additional vehicle operating costs paid by drivers as a result of substandard roads.14 Additional research on the impact of road conditions on fuel consumption by the Texas Transportation Institute (TTI) is also factored into TRIP’s vehicle operating cost methodology.

Bridge Conditions in Nevada

Nevada’s bridges form key links in the state’s highway system, providing communities and individuals access to employment, schools, shopping and medical facilities, and facilitating commerce and access for emergency vehicles.

A total of 12 percent of Nevada’s locally and state-maintained bridges (20 feet or longer) are currently rated as structurally deficient or functionally obsolete.
Two percent of Nevada’s locally and state-maintained bridges are rated as structurally deficient. \(^{15}\) A bridge is structurally deficient if there is significant deterioration of the bridge deck, supports or other major components. Bridges that are structurally deficient may be posted for lower weight limits or closed if their condition warrants such action. Deteriorated bridges can have a significant impact on daily life. Restrictions on vehicle weight may cause many vehicles – especially emergency vehicles, commercial trucks, school buses and farm equipment – to use alternate routes to avoid posted bridges. Redirected trips also lengthen travel time, waste fuel and reduce the efficiency of the local economy.

Ten percent of Nevada’s locally and state-maintained bridges are rated functionally obsolete. \(^{16}\) Bridges that are functionally obsolete no longer meet current highway design standards, often because of narrow lanes, inadequate clearances or poor alignment with the approaching roadway.

The service life of bridges can be extended by performing routine maintenance such as resurfacing decks, painting surfaces, insuring that a facility has good drainage and replacing deteriorating components. But most bridges will eventually require more costly reconstruction or major rehabilitation to remain operable.

Traffic Congestion in Nevada

Commuting and commerce in Nevada are constrained by growing traffic congestion, which will increase in the future unless additional highway and transit capacity is provided. Vehicle travel in Nevada has increased dramatically in recent years, without a corresponding increase in roadway lane miles. As a result, the state’s roads have become increasingly congested, choking commuting and commerce.
According to the Texas Transportation Institute (TTI), the average driver in the Las Vegas urban area loses $906 each year in the cost of lost time and wasted fuel as a result of traffic congestion. The average commuter in the Las Vegas urban area loses 44 hours each year stuck in congestion. Based on TTI methodology, TRIP calculates that the average driver in the Reno-Carson City urban area loses $590 each year in the cost of lost time and wasted fuel as a result of traffic congestion. The average commuter in the Reno-Carson City urban area loses 27 hours each year stuck in congestion.

The total cost of traffic congestion annually in Nevada is $1.1 billion in lost time and wasted fuel.

Traffic Safety in Nevada

A total of 1,443 people were killed in motor vehicle crashes in Nevada from 2007 through 2011, an average of 289 fatalities per year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>373</td>
</tr>
<tr>
<td>2008</td>
<td>324</td>
</tr>
<tr>
<td>2009</td>
<td>243</td>
</tr>
<tr>
<td>2010</td>
<td>257</td>
</tr>
<tr>
<td>2011</td>
<td>246</td>
</tr>
<tr>
<td>Total</td>
<td>289</td>
</tr>
</tbody>
</table>

Source: National Highway Traffic Safety Administration

Three major factors are associated with fatal vehicle crashes: driver behavior, vehicle characteristics and roadway features. It is estimated that roadway features are likely a contributing factor in approximately one-third of fatal traffic crashes. Roadway features that
impact safety include the number of lanes, lane widths, lighting, lane markings, rumble strips, shoulders, guard rails, other shielding devices, median barriers and intersection design.

Nevada’s overall traffic fatality rate of 1.16 fatalities per 100 million vehicle miles of travel in 2010 is higher than the national average of 1.11.23 Nevada’s traffic fatality rate on rural, non-Interstate routes is nearly two times higher than the rate on all other roads and highways in the state. The fatality rate on Nevada’s non-Interstate rural roads was 1.91 fatalities per 100 million vehicle miles of travel in 2010, nearly two times higher than the 0.98 fatality rate in 2010 on all other roads and highways in the state.24 And, while just 14 percent of vehicles miles of travel in Nevada in 2011 occurred on rural, non-Interstate routes, 31 percent of all traffic fatalities in the state in 2011 occurred on rural, non-Interstate roads.25

The cost of serious traffic crashes in Nevada in 2011, in which roadway features were likely a contributing factor, was approximately $508 million.26 In the Las Vegas urban area, the cost of serious traffic crashes in which roadway features were likely a contributing factor is approximately $193 per motorist.27 The cost of serious traffic crashes in the Reno-Carson City urban area in which roadway features were likely a contributing factor is approximately $337 per motorist.28

Improving safety on Nevada’s roadways can be achieved through further improvements in vehicle safety; improvements in driver, pedestrian, and bicyclist behavior; and a variety of improvements in roadway safety features.

The severity of serious traffic crashes could be reduced through roadway improvements, where appropriate, such as adding turn lanes, removing or shielding obstacles, adding or
improving medians, widening lanes, widening and paving shoulders, improving intersection layout, and providing better road markings and upgrading or installing traffic signals.

Roads with poor geometry, with insufficient clear distances, without turn lanes, having inadequate shoulders for the posted speed limits, or poorly laid out intersections or interchanges, pose greater risks to motorists, pedestrians and bicyclists.

Investments in rural traffic safety have been found to result in significant reductions in serious traffic crashes. A 2012 report by the Texas Transportation Institute (TTI) found that improvements completed recently by the Texas Department of Transportation that widened lanes, improved shoulders and made other safety improvements on 1,159 miles of rural state roadways resulted in 133 fewer fatalities on these roads in the first three years after the improvements were completed (as compared to the three years prior). TTI estimates that the improvements on these roads are likely to save 880 lives over the next 20 years. \(^{29}\)

Transportation Funding in Nevada

A bi-annual state report released in early 2013 by the Nevada Department of Transportation found that there is a significant backlog in needed repairs on state-maintained roads, highways and bridges in Nevada. These state-maintained roads, highways and bridges are a critical component of the state’s transportation system, accounting for 20 percent of the state’s road mileage, but carrying 54 percent of all vehicle miles of travel and 80 percent of all large truck travel in the state. \(^{30}\)

The report found that currently 23 percent of state-maintained roads and highways in Nevada need major rehabilitation and that the current backlog to repair all state maintained roads
and bridges is approximately $2 billion, with $1.9 billion being for pavement preservation and the remainder for needed bridge repairs.\\(^{31}\)

The report noted that the backlog for needed road, highway and bridge repairs has increased significantly since 2011 when it was $1.36 billion and that under current levels of funding the preservation backlog to repair state-maintained roads, highways and bridges in the state is expected to increase to $3.4 billion by 2025.\\(^{32}\) The report estimated that eliminating the backlog of needed repairs on Nevada’s state-maintained roads, highways and bridges would require an additional investment of $285 million annually through 2025.\\(^{33}\)

Importance of Transportation to Economic Growth

Today’s culture of business demands that an area have well-maintained and efficient roads, highways and bridges if it is to remain economically competitive. The advent of modern national and global communications and the impact of free trade in North America and elsewhere have resulted in a significant increase in freight movement. Consequently, the quality of a region’s transportation system has become a key component in a business’s ability to compete locally, nationally and internationally.

Businesses have responded to improved communications and the need to cut costs with a variety of innovations including just-in-time delivery, increased small package delivery, demand-side inventory management and by accepting customer orders through the Internet. The result of these changes has been a significant improvement in logistics efficiency as firms move from a push-style distribution system, which relies on large-scale warehousing of materials, to a pull-style distribution system, which relies on smaller, more strategic movement of goods. These
improvements have made mobile inventories the norm, resulting in the nation’s trucks literally becoming rolling warehouses.

Highways are vitally important to continued economic development in Nevada, particularly to the state’s tourism, lumber, agriculture and manufacturing sectors. As the economy expands, creating more jobs and increasing consumer confidence, the demand for consumer and business products grows. In turn, manufacturers ship greater quantities of goods to market to meet this demand, a process that adds to truck traffic on the state’s highways and major arterial roads.

Every year, $53 billion in goods are shipped from sites in Nevada and another $77 billion in goods are shipped to sites in Nevada, mostly by trucks.34 Seventy-eight percent of the goods shipped annually from sites in Nevada are carried by trucks and another 18 percent are carried by courier services or multiple-mode deliveries, which include trucking.35

The cost of road and bridge improvements are more than offset by the reduction of user costs associated with driving on rough roads, the improvement in business productivity, the reduction in delays and the improvement in traffic safety. The \textit{Federal Highway Administration} estimates that each dollar spent on road, highway and bridge improvements results in an average benefit of $5.20 in the form of reduced vehicle maintenance costs, reduced delays, reduced fuel consumption, improved safety, reduced road and bridge maintenance costs and reduced emissions as a result of improved traffic flow.36

\textit{Site Selection magazine’s 2010 survey} of corporate real estate executives found that transportation infrastructure was the third most important selection factor in site location decisions, behind only work force skills and state and local taxes.

Increasingly, companies are looking at the quality of a region’s transportation system when deciding where to re-locate or expand. Regions with congested or poorly maintained roads
may see businesses relocate to areas with a smoother, more efficient and more modern transportation system.

Increasing investment in Nevada’s roads, highways and bridges will also boost the state’s economy by creating jobs. A [2007 analysis by the Federal Highway Administration](https://www.fhhc.gov/) found that every $1 billion invested in highway construction would support approximately 27,800 jobs, including approximately 9,500 in the construction sector, approximately 4,300 jobs in industries supporting the construction sector, and approximately 14,000 other jobs induced in non-construction related sectors of the economy.37

Conclusion

As Nevada looks to build and enhance a thriving, growing and dynamic state, it will be critical that it is able to provide a 21st century network of roads, highways and bridges that can accommodate the mobility demands of a modern society.

As the nation looks to fully rebound from the recent economic downturn, the U.S. will need to modernize its surface transportation system by improving the physical condition of its transportation network and enhancing the system’s ability to provide efficient and reliable mobility for motorists and businesses. Making needed improvements to Nevada’s roads, highways and bridges could provide a significant boost to the state’s economy by creating jobs in the short term and stimulating long-term economic growth as a result of enhanced mobility and access.
Without a substantial boost in federal, state and local highway funding, numerous projects to improve the condition and expand the capacity of Nevada’s roads, highways and bridges will not be able to proceed, hampering the state’s ability to improve the condition of its transportation system and to enhance economic development opportunities in the state.

###
Endnotes

1 U.S. Census Bureau (2012).
2 Highway Statistics (2011). Federal Highway Administration. DL-1C
3 TRIP analysis of Bureau of Economic Analysis data.
4 U.S. Department of Transportation - Federal Highway Administration: Highway
5 TRIP calculation based on U.S. Census and Federal Highway Administration data.
7 Ibid.
8 Ibid.
9 Selecting a Preventative Maintenance Treatment for Flexible Pavements. R. Hicks, J. Moulthrop. Transportation
Research Board. 1999. Figure 1.
11 Ibid.
12 Ibid.
13 Highway Development and Management: Volume Seven. Modeling Road User and Environmental Effects in
15 Federal Highway Administration (2012). National Bridge Inventory.
16 Ibid.
18 Ibid.
19 TRIP estimate based on TTI methodology.
20 Ibid.
21 TRIP estimate based on analysis of FHWA and TTI data.
23 TRIP analysis of National Highway Traffic Safety Administration and Federal Highway Administration data
(2012).
24 Ibid.
25 Ibid.
26 TRIP estimates based on National Highway Traffic Safety Administration (NHTSA) data.
27 Ibid.
28 Ibid.
29 Adding Highway Shoulders, Width, Reduce Crash Numbers and Save Lives (August 9, 2012). Texas Department
of Transportation.
31 Ibid.
32 Ibid.
33 Ibid.
34 Bureau of Transportation Statistics (2010), U.S. Department of
35 Ibid.
36 FHWA estimate based on its analysis of 2006 data. For more information on FHWA’s cost-benefit analysis of
highway investment, see the 2008 Status of the Nation's Highways, Bridges, and Transit: Conditions and
Performance.